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We give the continuum wave function solutions to the Schr6dinger equation for an electron 
moving in the Coulomb field of two point nuclei, as an expansion in terms of one centre Coulomb 
wave functions in a prolate elliptical coordinate system. These solutions may be chosen to have a 
convenient asymptotic behaviour, and tend to the conventional solutions of the Helmholtz equation 
in the limit that the nuclear charge goes to zero. In symmetric systems, where both nuclei have the same 
charge the angular wave functions are found to be identical with those occurring in the free case, and 
the expansion coefficients for the corresponding radial solutions are given for selected values of electron 
energy and nuclear separation. 
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1. Introduction 

It is well k n o w n  tha t  the Schr6d inger  equa t ion  for an e lect ron moving  in the 
C o u l o m b  field of two nuclei  is separab le  in p ro la t e  el l ipt ical  coord ina tes  [1, 2]. 
Several  so lu t ions  for the b o u n d  states exist, and  cor re la t ion  d i ag rams  of energy 
eigenvalues as a funct ion of in te rnuc lea r  s epa ra t ion  are  avai lab le  [2 -4 ] .  

The  Di rac  equa t ion  with  two C o u l o m b  centres has also been solved for b o u n d  
states and  the co r r e spond ing  relat ivis t ic  co r re la t ion  d i ag rams  ob ta ined  [5]. 
N o n  charac te r i s t ic  X-rays  obse rved  in heavy  ion coll is ions below the C o u l o m b  
bar r ie r  can be a t t r i bu t ed  to t rans i t ions  between these quas imolecu la r  levels, 
and  for a to ta l  charge  Z ( t a r g e t ) + Z ( p r o j e c t i l e ) ~ 1 3 7  these relat ivist ic  wave 
funct ions mus t  be used for the deeply  b o u n d  states. In  o rder  to examine  the to ta l  
K-shel l  vacancy  p r o d u c t i o n  we wish to calcula te  the cross sect ion for exci ta t ion  
of K elect rons  to  low lying c o n t i n u u m  states t h rough  the rad ia l  and  Cor iol is  
coupl ing  descr ibed  in Ref. [6]. As a first s tep we take  advan tage  of the separab i l i ty  
of  the Schr6dinger  equa t ion  to ca lcula te  a lm6s t  ana ly t ic  two centre  non-re la t iv is t ic  
C o u l o m b  wave funct ions which have a s t ruc ture  s imilar  to the k n o w n  a lmos t  
ana ly t ic  so lu t ions  to the H e l m h o l t z - e q u a t i o n  in p ro la t e  el l ipt ical  coord ina tes  [7]. 

* This work was supported by the Bundesministerium fiir Forschung und Technologie (BMFT), 
and by the Gesellschaft fiir Schwerionenforschung (GSI). 
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2. Solution of the Schr6dinger Equation 

2,1. Separation 

We work in a system of prolate elliptical coordinates (3, t/, ~b) defined by 

r l+r2  r l - r 2  with ~b the angle between the (x, z)-plane, and the plane 
~ -  g ; t / -  R 
containing r 1 and r 2 (see Fig. 1). 

Thus 

x = ~ R[(~ 2 -  1) 2 ( l - t / ) ]=cos  4 

y=  ½ R[(4 2-1)  2 ~ • (l-t/)]~sln~b 

z =  ½ R4t/ 

with 

1<3<oo;  -t<t/__< +1; 0<~b<2rr, 

where R is the internuclear separation. 
The two nuclei have charges Z 1 and Z2 and the potential felt by an electron 

at r is 

- -  ~ Z  1 o~Z 2 
V(r, R ) =  - -  

rl r2 

where e measures the strength of the interaction. We work in natural units 
throughout, so that c~ is the fine structure constant. 

In this coordinate system with this potential the Schr6dinger equation separates 
to give [1, 2], for positive energy E 

d2~ 
d~ ~ + m2~ = 0, (1) 

d f 2 dSI rags 
~ l  ( l - t / ) ~ /  l - r /2  + [ p t l + A - e 2 t / 2 ] S = O ,  (2) 

~ {  (42- l')~-}dX/ 4 2-1m2X + [ c 2 4 2 + q 4 - A ] X = O  , (3) 

where p = c f f Z e - Z O R ;  q = e ( Z 1  +Z2)R; c 2= 1 ER 2 and m and A are separation 
constants. The solution to the SchrSdinger equation 

Cram 1 - V 2 + V(r, R) 71 = E T  

is then given by the product 

~'(4, t/, ¢) = X(4)S(~)*(¢) • 

Equation (1) may be solved immediately to give ~ = 1 ~  ei"* (m integer) ex- 

pressing the rotational symmetry of the problem about the z-axis. In the limit 
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Fig. 1. The coordinate system used to describe the wave functions 

R ~ 0 ,  ~ r  and t /~cos0 (see Fig. 1). Equation (2) is therefore the two center 
analogue of the angular equation in the one center case, while Eq. (3) is the analogue 
of the radial equation. In the case Z~ = Z 2 = 0  so that p = q = 0  these equations 
reduce to the separated Helmholtz equation in prolate elliptical coordinates, 
whose solutions are known [7]. We wish to find the solutions to (2) and (3) which 
reduce to these solutions in a simple and direct way as p and q~0 .  

2.2. The Angular Equation 

The solution to the angular equation is given by Chakravarty [-2] as a sum of 
Legendre polynomials 

S,.z(c, p, rl) = ~.~= o dm~( c, P)P~ + .(t/), (4) 

where the "~ d. (c, p) satisfy the recursion relation (RR) 

m l  - -m l  - -  m l  ml  - -  m l  J m l  - -  - m l  ~ m l  - -  m l  J m l  = 0  (5) 
W n + 2 a n + 2 - 1 - 1 ) n +  ldn+l ~ - u  n a n ~ - r n - l a n - 1  " 5 - S n _ 2 a n _  2 

with 

mZ _ ( n + 2 m + l ) ( n + 2 m + 2 )  
% + 2 -  (2m+2n+3)  (2m+2n+5)  

.,l ( n + 2 m +  1) 
V . + l -  ( 2 m + 2 n + 3 ) p ,  

u~ l = (m + n) (m + n + 1 ) -  A,.t + 

ml  - -  n 

t .-1 - ( 2 m + 2 n -  1) p '  

,.z n ( n -  1)c 2 

s.-2 = ( 2 m + 2 n -  1) ( 2 m + 2 n -  3)" 

C 2 

2(n+ m) ( n + m +  1) -2m z -  1 

(2m + 2 n -  1) (2m + 2n + 3) 

(6a) 

(6b) 

c 2 , (6c) 

(6d) 

(6e) 
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Here A,,~ is the separation constant, which is clearly labelled by the eigenvalue m. 
The RR (5) may be considered as an infinite set of homogeneous equations for 
the coefficients d~ t. The condition that this set should have a non trivial solution 
is given by considering the determinant 

AA(c, p) = de t (M-  IA) = 0 = 

- 0  
0 

- 0  
- 0  

with 

Sn_ 4 tn_ 3 ~tn_ 2 -- A l)n_ 1 W n 0 

0 Sn - 3 t n -  2 Un- 1 -- A v,  w .  + 1 0 

0 0 sn_ 2 t ._  1 ~,-A v , + l  w , + z  0 

0 0 0 Sn-1 tn b l n + l - - A  Pn+2 Wn+3 0 -  

~7~' = (m + n) ( re+n+ 1)+ 

(7) 

2(n + m) (n+m+ 1)-2m 2 -  1 C2 m l  

--~ tA n + Aml • 
(2m + 2 n -  1) (2m+2n+ 3) 

If Aa(c, p)= 0 then there is a non-trivial solution for the d~ ~. Hence the Aml a r e  the 
eigenvalues of M, labelled by l--m + k, k = 0, 1, 2, . . . .  The convergence of AA(C, p) 
and the calculation of the eigenvalues A,, l are discussed in Refs. [2, 7]. It should be 
noticed that as p--+0 the RR 5 and eigenvalues matrix 7 reduce to the free particle 
RR and eigenvalue problem, discussed in Ref. [7]. Thus for symmetric systems 
(Z, = Z2) the angular solutions are identical to the free particle angular solutions. 
We shall return to the calculation of the d~ ~ in Section 3. 

2.3. The Radial Equation 

In the free case, q = 0, we know the solutions to the radial Eq. (3) may be written 

1 (4 2 - 1~ m/2 (2m+n)! ~c4jm+.(cO 
Xm,(c,q=0,4)oc ~ ~ ]  Y~.~ . . . .  o i"+m-' (8a) 

.od~= 1 n! [c4y.,+.(c0 

with the asymptotic form 

X=,(c, q = O, 4) ~ )j,(c4) (8b) 
c~-~ [y,(cO, 

where jr(cO, yv(c¢) are spherical Bessel functions of the 1st and 2nd kind. For the 
two center Coulomb problem we seek analogous solutions in terms of the usual 
one center Coulomb wave functions I-9]. 

Putting 

1(¢2-1 F" x(c, q, 0 = ~ \ ~ ]  Y(c, q, 0 

gives, with c~ = x  

+ x2 + c Y -  c2 )d2 Y 

= G Y = 0  

2(m+ l) dY  
x dx 

(9) 

+ (m+l)(m+2)x 2 Y} 

(lo) 
for the equation satisfied by Y. 
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Let us compare this with the Coulomb wave equation 

d2UL(X) I 21"1 L(L+I!]UL(X)=YLUL(X)=O (11) 
dx ~ + 1 x x 2 

If we consider HLU L = ( G - f f L ) U L  then we get, putting t / = -  ½ q/c 

HLUL = [L(L+ 1)-Amt ] - c2  ~x 2 + - - x  dx x 2 , U L (12) 

and using the RR for the Coulomb wave functions [9] we may write 

HLUL = Z~- 2- 2 aLL+uUL+u (13) 

with 
(L+m+ l) ( L + m + 2 )  [ (L+ 1): +q2] ~ [ (L+ 2)2 +~]2] * c2 (14a) 

aLL+ 2 = - (L + 1) (L + 2) (2L + 1) (2L + 3) ' 

2mr/[(L + 1) 2 + ~ / 2 ] ~  (L + m + 1) c2 
¢ILL+I - - - -  L(L+ 1) (L+2)  (2L+ 1) ' 

~2L(L + 1) -2m 2 -  1 
aLL=L(L+ 1)-Amt+C2 [ 2 - ~ - ~ ( 2 ~  

(14b) 

[L(L + 1) - 3m 23 t 
+ 2~12 L(L + 1) (2L - 1) (2L + 3), ' 

(14c) 

(14d) 
_ 2rlm[L 2 +q2]~ 

( L -  m)c 2 , 
aLL- 1 = (L-- 1)L(L + 1) (2L + 1) 

- [ L  2 + r/2] ~ [ ( L  - 1) 2 + r/x] ½ 
( g -  m) ( L -  m - 1)c 2 . (14e) 

aLL-2 = ( L -  1)L(2L- 1) (2L + 1) 

Now if (G-~L)UL=~ZaLaU z then Y = ~ f ~ U ~  is a solution of GY=:0 if thef~ 
satisfy the RR (see Ref. [10]) 

~aaaufx=O (15) 

that is, the RR satisfied by the f~ is 

~ ' l + 2 f ~ 2 + ~ , l + l f Z  1 +~t~tfnml+t~l+lfnmj I + ~."_12 f ,  mj 2 = 0 (16) 

with 
-,.z _ [(m+n+2)z+qzji[(m+n+l)Z+~le]~(n+l)(n+2)c21, (17a) 

W n + 2  (re+n+ 1) (m+ n+  2) (2m+ 2n + 3) (2m+ 2n+ 5) 

-.a _ 2qm[(m+n+ l)2 +n2]~(n+ l) c 2 (17b) 
] )n+ 1 - -  - -  (n+m) (n+m+ 1) (n+ m+ 2) (2n+ 2m + 3) 

.,., ~2(m+_ n)(m+n+ l ) - 2 m Z -  I 
u. = ( m + n ) ( m + n + l ) - A m t + C  2[  ( 2 m + 2 n - 1 ) ( 2 m + 2 n + 3 )  

2qe[(m+n)(m+n+l)-3m2] } (17c) 
+ (m+n)(m+n+l) (2m+2n-  1)(2m+2n+3)  ' 

7,.l 2rnq [(m + n) 2 + q2],  (2m + n) c2 (17d) 
t ' - l =  (m+n-1 ) (m+n) (m+n+l ) (2m+2n-1 )  ' 

-ml ( 2 m + n -  1) (2m+n) [(m+ n -  1)2 +t/2] ½ [ (m+ n)2 +~/2] ~ 
S . _  2 - -  C 2 , (17e) 

(re+n-- 1) (re+n) (2m + 2n-- 3) (2m + 2n-- 1) 
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where we have put L = m + n (see Appendix). Thefcoefficients are clearly functions 
ofc and ~/although this has not been explicitly indicated. It will also be convenient 
to define g~ 't such that 

f , , , =  (i),+ m-, (2m + n ) .  v g~,. (18) 
n! 

The g~Z then satisfy the RR 

, ,ml ,Tml - -  ,ml _rnl - -  ,ml ml.3_ t tml ml ,ml ml - - "  (19) 
Wn+ 2~3n+ 2"~" Un+ l~Jn+ l "f'bln gn ~ Vn- l ~ n -  l -~- S n -  2 g n -  2 - - U  

with 
,,,~ (2 re+n+ 1) (2m+ n + 2) [-(m+ n + 2) 2 + ~/2]~ [ ( m + n + n +  1)2 + ~/z] ~ 

W n + 2 =  C 2 
( m + n +  l ) ( m + n +  2 ) (2m+ 2n+ 3) (2m+ 2n+ 5) 

m ( 2 m + n +  1) [(m+ n+ l)Z +qz] i 

(20a) 

(20b) ,~l _ _ 2i~lc 2 l)n+ i -- 

(m+n)  ( r e + n +  1) ( m + n + 2 )  (2m+ 2n+ 3)'  

/2(m+ n) ( m + n +  1) -2m z -  1 
<m':(m + 1)-- Am,+ ( i] 

2 1 1 2 [ ( m + n ) ( m + n + 1 ) - 3 m Z J  } (20c) 
+ (m+ n) ( m + n +  1) ( 2 m + 2 n -  1) (2m+2n+  3) ' 

mn[(m + n) 2 + ~/2]~ (20d) 
t~J 1 = - 2i~1 c2 (m + n -  1) (m + n) (m + n + 1) (2m + 2 n -  1)' 

s,,, l _- n ( n -  1) [(m + n -  1) 2 + r/2]~[(m + n) 2 + r/z] + 
. -  2 (m + n -  1) (m + n) (2m + 2 n -  3) (2m + 2 n -  l j  2 . e  

(20e) 

These equations are the analogue to the free radial equation RR, which may be 
recovered by letting r/~0. We may note in passing that the pure imaginary terms 
in Eq. (20) give no trouble, every g'~ t calculated from Eq. (20) in either pure real 
or pure imaginary. All the f ,~  are real. 

3. Convergence of the Series Solutions and Normalization 

3.1. Convergence 

We shall examine the convergence of the series determined by the m~ g, • Exactly 
analogous remarks would apply to the series determined by the d, ~Z defined 
in Eqs. (5) and (6). For large n we have (n>m,  l, rl) 

w,ml ¼ C2 ; ,ml ~ _ i ~ l c 2 m / n  2 ; 
n + 2  ~ / ) n + l  

u,nml n 2. t,ml _ iqcZm/n 2; ,ml ¼ C2 ~n- l ~ S n - 2  ~ " 

Now using Eq. (19) we may derive 

ml 1 g n + l  , , ~  = (21) 
9n + 2 4i~m 4C 2 n2 gn~l 4irl m grffl 1 grffl 2 

Fl2 mt -~ t,12 ml ml 
gn+ l gn+ l gn+ l 
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ml 

gn+ 1 and if we assume ~ ~ 7n" for large n we have 
gn+ 2 

1 
n ~-2=  (22) 

4#lm 4c2n~+ 4 4itlmn2~ n3~+ 2 

and i t  can be seen that ~ = - 1, ? = 2ic provides a solution for large n. Similarly 
we could also derive 

ml n2 gn- 1 
,,,, - ( 2 3 )  

g . -2  4 # l m - 4 c Z n  2 gmt +4i  m g'2~+l g"m~+2n2 
g , -  1 

and with the assumption that 

ml 
gn-  1 

ml ~ ~ n~ 
g n -  2 

we reproduce Eq. (22), and hence once more require ~ = - 1, 7 = 2ic. 
Thus there are two possible solutions to the RR (19) which give for large n 

gmZ ,,~ (2ic) -"n !, (24a) 

"~ - -  (24b) 
g " ~  ~ c  n!" 

Clearly (24b) provides the convergent series for X,.l(c, q, ~). Exactly analogous 
remarks apply to the series for S,.~ generated by the d~ ~. Knowing the asymptotic 
form of the g,.Z and d~ l we may now consider solutions to the Schr6dinger equation 
with the appropriate asymptotic normalization. 

3.2. Normalization 

Inspection of Eqs. (5) and (19) shows that in the general case there are two 
arbitrary constants ar our disposal, viz. ~z  and d] a for the angular solutions and 
g~ a and 9~ a for the radial solutions. Those are specified by the normalization 
conditions. We consider the radial solutions first. 

3.2.1. Radial Part 

It is convenient to discuss the normalization in terms of the f~z [see Eqs. 

(16)-(18)]. We shall require that as c ~  o e X , , t - - , ~  U~(c~)i.e. 
4 

,~ o f~"ZFm +,(c~) ~ cV~(c~) , (25a) 

~,~= o f~lGm+,(c~)~cGl(c~) , (25b) 

where Fm +,(c~), G,, +,(c~) are the regular and irregular Coulomb wave functions [9]. 
Using the asymptotic form for these wave functions we may reduce Eq. (25) to 
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the following conditions on the f~l  

~2= o fy%os(';bm +,,-- 4~1)= c,  

~ =  o fylsin(~,, + , -  qSl) = 0, 

where 

L~ 
(~L = O-L 2 ' 

= argF(L + 1 + itl) = a L _ 1 q- arctan ~ ,  aL 

i.e. aL is the Coulomb phase shift. 

P. T.  G r e e n l a n d  

(26a) 
(26b) 

(26c) 

(26d) 

3.2.2. Angular Part 

The analogous condition here is a generalization of the Stratton-Morse-Chu- 
Little-Corbat6-scheme [7], which has the effect that for p = 0  

Smz(C,p,t/)~P~(t/) as t/--+l. (27) 

For the case p =# 0 we shall require the two conditions 

S,,1(c,p,t/)--+P~(t/) as q--+l, (28a) 

S,.l(c, p, - t l )+P'f(-q)  as - t / + l ,  (28b) 

i.e. 

o r  

Z~- o d~' [(n + 2m)!] _ (1 + m)! 
[ ~ ]  (t- m)!' 

Z~=od,~1[(n+Zm)!] 1),+m=(_ (l+m)! 
[ ~ j  ( -  1)' ( l -  m) I' 

co n ~,= o Z( , m,  1)din. l = 1 ,  

~,G o co(n, m, l)d=, 1 = O, 

(29a) 

(29b) 

(29c) 

(29d) 

with 

z(n, m,/)= 1 ( l -m)!  (2m+ n)! [1 + ( -  1)n+m-l], (30a) 
2( l+m)!  n! 

co(n, m, l) = 1 (1-- m)! (2m + n)! [1 - (-- 1) "+m 1]. (30b) 
2 (/+m)! n! 

3.2.3. The Calculation of the Coefficients d~, l, f~1 

In principle the coefficients may be calculated by a simple procedure which 
we shall describe for the f~l. The d~ z may be calculated in an exactly analogous 
fashion. We shall drop the label ml onfff '  since it plays no role in this discussion. 
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Since the RR (16) is homogeneous if the set {f,} is a solution then so is the 
set {c~f,}. Let us therefore pick arbitrary starting valuesfo m andf(~). This enables 
us to calculate the set {f,~} where we choose the convergent solution (24b). 
Similarly by choosing the starting values fo ~2) and fx (2) we may generate another 
solution {f~2)}. The required solution is then a linear combination of these two, 
so that defining 

C~ = ~2= o c°s(qSm +, - qb,)f, (~) , (3 la) 

S~ = Z~°= o sin(~bm +, - Ot)f, (~) , (3 lb) 

we have 

~ C  1 -q- fiG 2 = c ,  (32a) 

(xS 1 -~ flS 2 = 0 ,  (32b) 

L =~f~*) +/~f.  ~2) • (32c) 

Since Isin01 _-< 1, Icos01 < 1, and since thef .  are strongly convergent we raay expect 
that only a few terms in the sums 31 will yield an accurate result and thus C, 

(C~Cz)=O,  and S~ may be calculated easily. The only difficulty occurs if A = det $1 $2 

when the Eq. (32) become singular. It is shown in appendix one that this can 
only occur if 

(1)/~e(1) --  ~e(2)/F(2) 
/.11 -- J O /.11 

or if t /~  oe. 
Consequently if we avoid these conditions the f ,  may be calculated[ uniquely. 

The analogous procedure for the RR (5) yields values for the dmk In practice 
the f ,  and d, must be calculated by backward recursion since the required series 
decreases very rapidly in the forward direction [11]. That is to say we specifyf~ ~) 
a n d f ~ l  for some large N and iterate Eq. (17) to fo (~) with the assumption that 
f~)N = 0. The f,(~) are then normalized so that fo(~)= 1 and the appropriate linear 
combination calculated from Eq. (32). Values of thef,~Z(c, t/) are given in Table 1 
for selected values of the parameters. 

Writing the overall solution as 

N I~2- 1]~m 
IPml(r 'E)=NXmlgnlCI)ral= ~ [  ~2 ] {~,~=of2a[F,,+,(c~)+iGm+,(c~]} 

{~nCO=o ml  m ei,.e/~ (33) • d .  Pm+n(tl)} 

o r  

R3fl 8 J-ldr/y2°~dqS(~2-r/2)lTJ[2-*l as c¢ -*~  

N= 23 {~= (2m+n) ! }--~ 
~cc o (2n + 1)n ! Id""q2 " (34) 
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Table 1. Selected values of the coefficientsfffl(q, R) [Eq. (33)] for symmetric systems with total charge 2Z. 
Energies are measured in terms of~ (c~Z) 2 = ¼ the separated atom is binding, distances in units of 1/(c~Z) 
the separated atom ls Bohr radius. Negligible coefficients are set equal to zero. The notation used 

is A(B)=A. 10 -B 

E=0.01 t/= - 4 0  m=0 

R=0.1 c =2.5(3) R=  1.0 c = 2.5(2) R=8.0 c=0.2 

n ~  O 1 2 0 1 2 0 1 2 

0 2.5028(3) -8.35(6) 1.2472(3) 2.7955(2) -9.47(4) t.2621(2) - l .1144 0.4741 0.2235 
1 4 . 1 7 ( 6 )  2.4990(3) 3.1200(3) 4 .46(3)  2.3818(2) 3.1632(2) -2.6702 1.3165 0.6101 
2 1.39(6) 0 4.3719(3) 1 .53(3)  7.72(5)  4.4259(2) -1.9816 1.0055 0.7994 
3 0 1.67(7) 3.48(7) 2.47(5) 1.59(4) 3 .50(4)  -0.7714 0.4400 0.2964 
4 0 0 0 2.2(6) 0 0 -0.1686 9.43(2) 9.41(2) 
5 0 0 0 0 0 0 -2.55(2) 1.56(2) 1.21(2) 
6 0 0 0 0 0 -2.59(3) 1.52(3) 1.69(3) 
7 0 0 0 0 0 0 -2.07(4) 1.31(4) 1.10(4) 

R=2  /=0  

E=0.05 c=0.1118 E=0.1 c=0.1581 

0 1 2 0 1 2 

0 0.1748 0.1208 7.6160(2) 0.2503 0.1721 
1 9.796(2) !.610(2) - 3.4212(2) 0.1416 2.334(2) 
2 3.642(2) 6.84(3) 1.0283(3) 5.307(2) 1.005(2) 
3 2.16(3) 2.11(4) 1.951(4) 3.22(3) 3.20(4) 
4 4.8(6) 2.5(5) 2.02(6) 3.25(4) 3.9(5) 
5 0 0 1.1(9) 7.6(6) 5.6(7) 

O. 1086 
-4.885(2) 

1.547(3) 
- 2.98(4) 

3,35(6) 
- 3.59(7) 

R = I  E=0.5 m=0 c=0.17678 

n ~  0 1 2 3 4 

0 0.19836 - 6.846(3) 7.998(3) 0.18687 - 0.61765 
I 3.2118(2) 0.16856 0.20675 0.10038 - 0.47734 
2 1.1674(2) - 6.006(4) 0.30173 - 1.1364(2) 1.5912(2) 
3 2.134(4) 1.344(3) 2.738(3) 0.18088 4.803(3) 
4 2.306(5) - 1.320(6) 8.522(4) - 5.609(5) 2.4278(2) 
5 1.8(7) - 1.245(6) 2.96(6) 2.604(4) 1.244(5) 
6 1.0(8) 0 4.7(7) - 3.7(8) 2.168(5) 

W e  h a v e  used the  a s y m p t o t i c  f o r m  f o r X ,  a g iven  in Eq.  (24) and  the  v o l u m e  e l emen t  

in this  c o o r d i n a t e  sys tem,  g iven  by  

R 3 
dz = ~ -  (42 - ~72)d~dlldc~. 

This  n o r m a l i z a t i o n  then  c o r r e s p o n d s  to a dens i ty  o f  one  pa r t i c l e  per  uni t  v o l u m e  

at  la rge  d i s tances  (r >> R). 
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4. Summary 

In conclusion, we have constructed continuum solutions to the Schr6dinger 
equation for the Coulomb field of two point nuclei, normalized to one particle 
per unit volume at large distances. These solutions have a close analogy to the 
solutions to the Helmholtz equation in prolate elliptical coordinate, s and for 
symmetric systems the angular equation reduces to the free particle angular 
equation. Table 1 shows that in many cases only a few terms in the series expansion 
are required to ensure good accuracy, and hence the solutions have, practical 
utility. 
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Appendix I 

1. Lowes t  Term in the Expansion of the Radial Wave Function 

We wish to show that the lowest term in the expansion of YI~ is the term U~, i.e. 

Y,.t = ~ : o  Um+.f .  "z (A1) 

and that no terms with n < 0  are required. This may be seen by considering Eqs. (13) and (14). Since 
HL = GL-- ~ L  and Y L U L =  0 we have 

GUm= H~U,~=a,. , , .Um + .., 

GUm+ I = Hra+ l Um+ i =am+ l.mUm + . . .  

GU,,+ z=H,~+ 2 Um+ z=a, .+ 2,~U,. + ... 

GUm+3 = Hm+ 3Ura+ 3 : a m +  3 , m +  1 Urn+ 1 -]-"" 

since am, m-2 = am,m-1 = a~ + ~,~_ ~ = O. Therefore GU m +n can generate no terms of order less than m 
whenever n_>_0. Thus the series for Yml contains no terms of order less than m and the sum in (A1) runs 
from n = O ~ n =  oo. 

2. The Singularities o f  A 

Suppose A = d e t ( s  C1 S C2) = 0 .  (A2) 

Let us further suppose that the sums in Eq. (31) have been truncated at N terms so that 

C~ = ~u= 0 fff)cos(~b,, +,, - ~bz) , (A3a) 

S~ = ~s__ o fff)sin(~bm +, - ~b,). (A3b) 

We also have N - 2  homogeneous equations from the RR for thef,  (it is easier to see this by considering 
the RR for the g,), i.e. 

0Y0  / 1~¢1 ~ 2~2 -- ] N 2 

t~g(0 ~' + u~g]~) + v~g(2V) + w'3g(3 v)= 0 t e~l~ations 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ) (A3c) 

A = 0 gives two possible cases 

(1) C1=7S1;  62=])S 2 
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i.e, 

~.~= o f.(l)[cos(q~,. +. - ~b,)- ysin(qSm + . -  (a,)] = 0 ,  (A4a) 

2~= 0 f(2)[COS(~rn +. -- ~bl)- ysin(~b,, + , -  ~bl)] = 0 .  (A4b) 

N o w  the R R  Eq. (A3c) t aken  with (A4a) give N 1 h o m o g e n e o u s  equa t ions  in N variables. Hence  
they may  be solved to within a no rma l i za t ion  to give { f ro} .  However  (A3c) taken  with (A4a) give 
exactly the same  N - 1  h o m o g e n e o u s  equa t ions  whose  solut ion can  only differ f rom {f(1)} by a nor-  
malizat ion,  and  hence 

f~,) = af,12) (A5) 

Thus  i fC  1 =TS i ,  C 2 =yS2 then f~  1) =~f(2)  for all n. This  can  always be avoided by choos ingfo  (v) a n d f f f  ) 
such tha t  

fom/f( 1' ¢ fo(2l/f~ 2) . (A6) 

(2) C I = y C 2 ;  SI=yS 2. 

In this case we have  the N - 2  Eq, (A3c) and  the two equa t ions  

~ _  0(f(l) _ 7f(Z))cos(~b, " +,  _ q~t) = 0 ,  (A7a) 

Z L  0(f, (1 ) -  ?f,(2))sin(~b,. +, - ~b~) = 0 .  (A7b) 

This  implies either f~ °)  = T f .  (2) which  we m a y  reject if (A6) is satisfied, or  there exists a solut ion L,'. = 
f o)_yf,2) which  satisfies the  N h o m o g e n e o u s  Eqs. (A3e) and  (A7). Th i s  is only possible if 

/ cos(,~,.- ¢,) cos(~,,,+1 - ~,) \ 
[ sin(q5,, - ~b,) sin(~bm +1 - 0,) ) d e t $ = d e t  / i~-l(2m)!u'° im-l+l(2m+l)!v'l = 0 .  
l im-l(2m)!t'o i"-~+l(2m+l)!u'l 

(A8) 

Let us write {f.~} as a co lum n  vector f~. T h e n  (A8) implies jO is an  e igenvalue of S with e igenvalue 0. 
However  since jO satisfies the R R  which  m ay  be wri t ten in mat r ix  form we know jO is an  eigenvalue 
of S' with e igenvalue 1, where  

tl o ) 0 1 

S ' =  i" l(2m)!uo i" z+*(2m+l)!v ' l  

l 
i '~ '(2re)It' o i~-'+t(2m+ l)tu'l 

Thus 

s ' ~  = ( s -  s ' ) f  = - f"  = 

c o s ( 4 m -  4 0 - 1  cos(q~m+l- ¢ , )  c o s  . . . .  

sin(qS,. - ~bl) sin(q~m + t -- ~bt) - 1 sin .. . .  

0 0 0 
0 0 0 

0 0 0 

or  S" m u s t  have  an  e igenvalue - 1 and  therefore 

/cos(~m-~O cos(~+~-fbO c o s  . . . .  

det sin(qS"~--~bl) sin(4~,.+l--q~,) sin .... 
0 0 + 1  

0 0 0 

. . . .  ,) 
+ 1  

= 0  
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which is only possible if 

tan(4~m - ~l) = tan(~b,, + 1 - ~l) 

and from the definition of ~bL this is only possible if 

t/ zr . 
arctan m +  1 2 ,  '.e. ~ o o .  

It is easy to show, by the same technique, that  provided 

d(1)/A(1) -4- .,/(2)/r/(2) 

then there is no singularity in calculating the d~'. z. 
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