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Non Relativistic Continuum Wave Functions
for Two Coulomb Centres*
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We give the continuum wave function solutions to the Schrédinger equation for an electron
moving in the Coulomb field of two point nuclei, as an expansion in terms of one centre Coulomb
wave functions in a prolate elliptical coordinate system. These solutions may be chosen to have a
convenient asymptotic behaviour, and tend to the conventional solutions of the Helmholtz equation
in the limit that the nuclear charge goes to zero. In symmetric systems, where both nuclei have the same
charge the angular wave functions are found to be identical with those occurring in the free case, and
the expansion coefficients for the corresponding radial solutions are given for selected values of electron
energy and nuclear separation.
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1. Introduction

It is well known that the Schrédinger equation for an electron moving in the
Coulomb field of two nuclei is separable in prolate elliptical coordinates [1, 2].
Several solutions for the bound states exist, and correlation diagrams of energy
eigenvalues as a function of internuclear separation are available [2-4].

The Dirac equation with two Coulomb centres has also been solved for bound
states and the corresponding relativistic correlation diagrams obtained [5].
Non characteristic X-rays observed in heavy ion collisions below the Coulomb
barrier can be attributed to transitions between these quasimolecular levels,
and for a total charge Z(target)+ Z(projectile)x137 these relativistic wave
functions must be used for the deeply bound states. In order to examine the total
K-shell vacancy production we wish to calculate the cross section for excitation
of K electrons to low lying continuum states through the radial and Coriolis
coupling described in Ref. [6]. As a first step we take advantage of the separability
of the Schrédinger equation to calculate almdst analytic two centre non-relativistic
Coulomb wave functions which have a structure similar to the known almost
analytic solutions to the Helmholtz-equation in prolate elliptical coordinates [7].

* This work was supported by the Bundesministerium fiir Forschung und Technologie (BMFT),
and by the Gesellschaft fiir Schwerionenforschung (GSI).
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2. Solution of the Schridinger Equation
2.1. Separation
We work in a system of prolate elliptical coordinates (&, %, ¢) defined by

E= n ;rz n= r1;r2 with ¢ the angle between the (x, z)-plane, and the plane
containing r, and r, (see Fig. 1).
Thus

x= 7 R[(E*~1) (1—n*]]Pcos¢
= 3 RI(E*—1) (1~1*)I¥sing

z=3R&n
with
1£8<00; —1=ns+1; 0=¢<2rm,

where R is the internuclear separation.
The two nuclei have charges Z, and Z, and the potential felt by an electron
atris
—aZ oZ
V(l‘, R): — - Ja
Ty ra
where « measures the strength of the interaction. We work in natural units
throughout, so that « is the fine structure constant.
In this coordinate system with this potential the Schrodinger equation separates
to give [1, 2], for positive energy E

W—szcD:O, (1)
d ds S

la-m g - o+ a—ei1s=o, o
dX ¢

le-0G - Fop ree - ax =0, ®)

where p=o(Z,—Z,)R; q=o(Z, +Z,)R; ¢*= % ER* and m and A are separation
constants. The solution to the Schrédinger equation

-2

—V2+V(r R)| ¥ =EY

L
is then given by the product

P& n, ¢)=X(ESMP(P) -

. . . 1, .
Equation (1) may be solved immediately to give &= vz—e"""’ (m integer) ex-
74

pressing the rotational symmetry of the problem about the z-axis. In the limit
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by

)

Fig. 1. The coordinate system used to describe the wave functions

R—0, {—r and n—cosO (see Fig. 1). Equation (2) is therefore the two center
analogue of the angular equation in the one center case, while Eq. (3) is the analogue
of the radial equation. In the case Z;,=Z7,=0 so that p=¢g=0 these equations

reduce to the separated Helmholtz equation in prolate elliptical coordinates
whose solutions are known [7]. We wish to find the solutions to (2) and (3) which

reduce to these solutions in a simple and direct way as p and g—0

The solution to the angular equation is given by Chakravarty [2] as a sum of

Legendre polynomials

ml(ca D- 1’])= Z;():O

2.2. The Angular Equation

d:lnl(ca P)Pm + n(rl) »

S,
where the d™(c, p) satisfy the recursion relation (RR)

ml mi gml ml ml
Wit 2y o Fomt dit  Fuptdyt e dt S dnt =0

with

n+2m+1)(n+2m+2)

2

Wyt =

ml
Up+1=—

m—(m+n)(m+n+1)—A,,+

ml
1= Gt 2no 1)
n(n— 1)c?

ml

(n+2m+1)
(2m+2n+3)

—n

mi
2m+2n+3)2m+2n+5)

2m+m)(n+m+1)—-2m*—1 ,
2m+2n—1)2m+2n+3)

" 2m+2n—1)2m+2n—3)

Sp—2=

k4

)

5)

(6a)
(6b)
(6¢)
(6d)

(6¢)
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Here A,,; is the separation constant, which is clearly labelled by the eigenvalue m.
The RR (5) may be considered as an infinite set of homogeneous equations for
the coefficients d™. The condition that this set should have a non trivial solution
is given by considering the determinant

A (¢, p)=det(M — [ 4)=0=

-0 Sp—4 lp—3 L_tn~2_A Up—1y Wy 0 - T

-0 0 Sn-3 Li—2 an—l_‘A Uy, Wht1 0 -
100 0 s ey BmA By W 00— o

-0 0 0 0 Sp-1 Ly l—’zn—i‘l_lél Up+2 Wnets 0 -

- - - - - - - - - == (7

with Y s

_ 2n+m)(n+m+1)—2m°—1

ml __ 1 2__,mi A ..

B = m ) Ot )t T omy a3y i T A
If 4 ,(c, p)=0 then there is a non-trivial solution for the dJ*. Hence the A, are the
eigenvalues of M, labelled by I=m+k, k=0, 1, 2, .... The convergence of 4 4(c, p)
and the calculation of the eigenvalues A4, are discussed in Refs. [2, 7]. It should be
noticed that as p—0 the RR 5 and eigenvalues matrix 7 reduce to the free particle
RR and eigenvalue problem, discussed in Ref. [7]. Thus for symmetric systems
(Z,=Z,) the angular solutions are identical to the free particle angular solutions.
We shall return to the calculation of the d™ in Section 3.

2.3. The Radial Equation

In the free case, g =0, we know the solutions to the radial Eq. (3) may be written

. 1 52—1 /2 © n+m—1 (2m+n)' céim+n(cé)
utea=0. 80 (| T GG
with the asymptotic form

Xl a=0.0= {169) (8b)

where j (&), y,(cE) are spherical Bessel functions of the 1st and 2nd kind. For the
two center Coulomb problem we seck analogous solutions in terms of the usual
one center Coulomb wave functions [9].
Putting
1 62_1 mi{2
Xea0-3(5" vead ©)
¢\ ¢
gives, with ¢ =x
,d*Y
X" = +

dx

x2+gx—Am,
c

dx? x  dx x*
=GY=0 (10)
for the equation satisfied by Y.

}y_cz{@ﬂmﬂm_mwﬂy}
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Let us compare this with the Coulomb wave equation
d*U (x) 2y L(L+1)
dez 1 P } Ux)=F,UL(x)=0. (11)
If we consider H U, =(G— % )U, then we get, putting = — % g/c
d? N Am+1) d (m+1) (m+2))| U

= - 1
HLU,= (UL )= Ag] =2 5 + 200 - Py, )
and using the RR for the Coulomb wave functions [9] we may write

H,U,= Z/L_—2aLL+[tUL+u (13)
with )

(L+m+1D)(L+m+2) [([L+ D> +7* 1 [(L+2)+7%]F ,
dyps,=— 2, (l4a)
L+ 1)(L+2)2L+1)RL+3)
2L+ D)’ +0* P (L+m+1) ,
R N T AN Y Y A )Y (T A R (14b)

AL+ 1)~ 2m*—1 LI+ 1) 3m?
aLLzL(L+1)—Am,+c2{ LA~ 2m 2 _LHLAD - 3m] }

AL—1)@RL+3) T LIZ+)RL-1)2L+3)’

N (14c)
= 2m[L*+9?]?
= DD LT (L—m)c?, (14d)
2,274 — 121 p273
— L7+ L= 1) +n] (L—m)(L—=m—1)c*. (14¢)

app-2= (L—1DLRL—-1)(2L+1)

Now if (G—F )U,=) ,a;,,U; then Y=3 U, is a solution of GY=0 if the f,
satisfy the RR (see Ref. [10])

ZzazquZO (15)
that is, the RR satisfied by the f; is
Wi o Sty + T S e s S, =0 (16)
with 5 ) .
e [m+n+22+7*T [(m+n+1)2+121F (n+1) (n+2) 2 (17a)
ntz (m+n+1)(m+n+2)2m+2n+3)2m+2n+5) ’
2, 2793
o 2pm[(m+n+ 1" +n*13(n+1) 2. (17b)
n+my(n+m+1)(n+m+2)(2n+2m+3)
N 2im+n)(m+n+1)—2m*—1
ml _ 1 -4 2
Bl =(mAn) (motn+1)— Ay +c { Om+2n—1) Cm+ 2+3)
2 [(m+n) (m+n+1)—3m?] (170
(m+n)(m+n+1)2m+2n—1)2m+2n+3)|’ ¢
- 2 2 273
o mu[(m+n)*+n*1% Cm+n) 2 (17d)
m+n—1)(m+n)(m+n+1)(2m+2n—1)
ot 2mAn—1)Cm+n) [m+n—172+9°) [(m+n)’+1°1* ,
n—2 (176)

(m-+n—1) (m+n) 2m+2n—3) 2m-+2n—1) €
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where we have put L=m+n (see Appendix). The f coefficients are clearly functions
of ¢ and » although this has not been explicitly indicated. It will also be convenient
to define g™ such that

Qm+n)!

S = premt T g (18)
n.
The g7 then satisfy the RR
W agns 2 H O 1gnh  H UG O g ST g, =0 (19)
with
m _ @mEnt1)2m+n+2) [(rrz+n+2)2+nz]%[(m+n+n+1)2+;12]‘i"cZ
2 (m+n+1)(m+n+2) 2m+2n+3)2m+2n+5) ’
(20a)
_ Im+n+1) [(m+n+1)2+4*]F
m i , 20b
O A mtnt 1) ntnt 2) Cm+2n+ 3) (205)
2m+n)(m+n+1)—2m>—1
ml_ 1 . 2
" =(mAn) (m 4t D)= A+ { Qm+2n—1) @m+ 2+ 3)
2n%[((m+n) (m+n+1)—3m?] } (200)
m+n)(m+n+1)2m+2n—1)2m+2n+3)|’
. +n)* +97]*
m i mnf(m 20d
e A D mtn) i+ D) @mt2n—1) (20d)
—1 — 12 1p?E 2, 274
BN ] (R e (U e 209

(m+n—1) (m+n) (2m+2n—3) 2m+2n— 1}

These equations are the analogue to the free radial equation RR, which may be
recovered by letting #—0. We may note in passing that the pure imaginary terms
in Eq. {20) give no trouble, every g™ calculated from Eq. (20) in either pure real
or pure imaginary. All the f™ are real.

3. Convergence of the Series Solutions and Normalization
3.1. Convergence

We shall examine the convergence of the series determined by the g™. Exactly
analogous remarks would apply to the series determined by the d™ defined
in Egs. (5) and (6). For large n we have (n>m, L, n)

rmi

1.2, 2 g2
~gC% U~ —inctm/n®;

'ml

Wht o

rmil 1,2

um~n?; ™M~ —incPmn?;, sy~ Le?.

Now using Eq. (19) we may derive

ml

Gn+1 . 1

ml T s 2.2 ml - ml 1

Gn+a2 Aimm  Acngl  dinmgiT,  gn-,
2 ml 2 Tml T _ml

n In+1t N Gu+1  YGn+1

(21)
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ml
and if we assume g:’n;r L ~yn?* for large n we have
nt+2
ni= L (22)
Cdigm ATt digmn?* pdet2
y ¥? A a
and it can be seen that o= — 1, y=2ic provides a solution for large n. Similarly
we could also derive
ml 2
In— n
g - = g g™ g (23)
" digm—A4cin® Sn— 4 digm Tirt it 2
In-1 n—1 n—1
and with the assumption that
ml
In—1 o
ml "
gnl—Z
we reproduce Eq. (22), and hence once more require a= — 1, y=_2ic.
Thus there are two possible solutions to the RR (19) which give for large n
gt~ (2ic)""n!, (24a)
1y™1
M l—] —=. 24b
In (2ic) n! (245)

Clearly (24b) provides the convergent series for X,,(c, g, £). Exactly analogous
remarks apply to the series for S, generated by the d7. Knowing the asymptotic

form of the g7 and d7 we may now consider solutions to the Schrédinger equation

with the appropriate asymptotic normalization.

3.2. Normalization

Inspection of Eqs. (5) and (19) shows that in the general case there are two
arbitrary constants ar our disposal, viz. &7’ and d7* for the angular solutions and
g™ and g7 for the radial solutions. Those are specified by the normalization
conditions. We consider the radial solutions first.

3.2.1. Radial Part

It is convenient to discuss the normalization in terms of the f™ [see Egs.

1
(16)—(18)]. We shall require that as ¢ -0 X,,;—~ E Ufcd)ie.

w0 S F i (€E)—CF (), (25a)
0 S Ga lcE) > cGicE), (25b)

where F,, , (c&), G, (c&)are the regular and irregular Coulomb wave functions [9].
Using the asymptotic form for these wave functions we may reduce Eq. (25) to
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the following conditions on the f™

20 SO n— P =c, (26a)
Yo fsin(r— ) =0, (26b)
where
Lrn
r=01— =, (260)
0L=argF(L+1+i11)=aL_1+arctan%, {(264d)

ie. gy, is the Coulomb phase shift.

3.2.2. Angular Part

The analogous condition here is a generalization of the Stratton-Morse-Chu-
Little-Corbatd-scheme [7], which has the effect that for p=0

Smlc, p,m)—P(n) as n-1. (27)

For the case p+0 we shall require the two conditions

Smlc, p,n)—>P(n) as n—1, (28a)
Sml(c> Ds —W)—’PZ"(_U) as —7]—)1 B (28b)
Le.
o [@E2m)] (4!
Yzody [ - }—(l_m)!, (29a)
=Od:1nl [(n_—l—%_m_)_} ( l)n-rm ( 1)1 (Z+m)! , (29b)
n! (I—m)!
or
2:10=0X(n7 m, l)d;nl =1 » (290)
=ow(n,m,dy' =0, (29d)
with
1{—m!(2m+n)! I
An,m, 1= 30T ),——[1+( e, (30a)
_ Li=m)!@m+n)! el

3.2.3. The Calculation of the Coefficients d™, f™

In principle the coefficients may be calculated by a simple procedure which
we shall describe for the £™. The d™ may be calculated in an exactly analogous
fashion. We shall drop the label m! on £™ since it plays no role in this discussion.
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Since the RR (16) is homogeneous if the set {f,} is a solution then so is the
set {of,}. Let us therefore pick arbitrary starting values f{* and f{*. This enables
us to calculate the set {f,!} where we choose the convergent solution (24b).
Similarly by choosing the starting values f{* and f{¥ we may generate another
solution {f£!®}. The required solution is then a linear combination of these two,
so that defining

Cy=) 0 0COS(min— PN, (31a)

Sy= Y oS P, — NS, (31b)
we have

aC,+pCy=c, (32a)

aS;+pS,=0, (32b)

fi=afD+B A2 (32¢)

Since [sinf| <1, [cosf| <1, and since the f, are strongly convergent we may expect
that only a few terms in the sums 31 will yield an accurate result and thus C,

Cc, C
and S, may be calculated easily. The only difficulty occurs if 4 =det ( S ! S 2) =0,
1 2

when the Eq. (32) become singular. It is shown in appendix one that this can
only occur if

SO = 12142

orify—oo.

Consequently if we avoid these conditions the f, may be calculated uniquely.
The analogous procedure for the RR (5) yields values for the d™. In practice
the f, and d, must be calculated by backward recursion since the required series
decreases very rapidly in the forward direction [11]. That is to say we specify fy"
and f{”; for some large N and iterate Eq. (17) to f§* with the assumption that
/¥y =0. The £ are then normalized so that f§” =1 and the appropriate linear
combination calculated from Eq. (32). Values of the f™(c, n) are given in Table 1
for selected values of the parameters.

Writing the overall solution as

N[E -1}
7 %} Qom0 S a8y +iG 1 €1}

: {Z,‘f’=od2’"1’$+n(n)} e/ 2n

Tml(ra E)ZNXmlSnIQMI =

(33)

R3
-—8~J"£ vdn 3FAd(E* - PP -1 as cf—oo

or

2 w Cm+m! o 17F
N e e e e 34
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Table 1. Selected values of the coefficients f™(y, R) [Eq. (33)] for symmetric systerns with total charge 2.Z.

Energies are measured in terms of § (#Z)? = } the separated atom is binding, distances in units of 1/(xZ)

the separated atom 1s Bohr radius. Negligible coefficients are set equal to zero. The notation used
is A(B)=A-10"%

E=001 #=-40 m=0
R=01  ¢=2.503) R=10  ¢=250) R=80c=02
K 0 1 2 0 1 2 0 1 2

0 25028(3) —8.35(6) 12472(3) 27955(2) —9.47(4) 12621(2)  —1.1144 04741 0.2235
1 4176)  24990(3) 3.1200(3) 4.46(3)  2.3818(2) 3.1632(2)  —2.6702 1.3165 0.6101
2 1396 0 437193)  1.533) 7725 44259(2) —19816 L0055 0.7994
30 L67(7)  3487)  247(5)  159(4) 350(4)  —0.7714 0.4400 0.2964
4 0 0 0 2.2(6) 0 0 —0.1686 9.43(2) 9.41(2)
5 0 0 0 0 0 0 —2.55(2) 1.56(2) 121(2)
6 0 0 0 0 0 —2.59(3) 1.52(3) 1.69(3)
70 0 0 0 0 0 —2.07(4) 1.31(4) 1.10(4)
R=2 =0
E=005  ¢=01118 E=01  c=0.581
X” 0 1 2 0 1 2
n
0 0.1748 0.1208 7.6160(2) 0.2503 0.1721 0.1086
1 97962)  1610Q)  —3.4212(2) 0.1416 23342 —4.885(2)
2 36422 6.840) 1.0283(3) 53072)  1.005(2) 1.5473)
3 2.16(3) 2.11(4) 1.951(4) 3.2203) 3.20(4) ~2.98(4)
4 43(6) 2.5(5) 2.02(6) 3.25(4) 3.9(5) 3.35(6)
5 0 0 L19) 7.6(6) 56(7) ~3.59(7)
R=1 E=05 m=0 ¢=0176T8

0 0.19836 — 6.846(3) 7.998(3) 0.18687 — 061765
1 3.2118(2) 0.16856 0.20675 0.10038 — 047734
2 1.1674(2) ~6.006(4) 0.30173 —1.1364(2) 1.5912(2)
3 2.134(4) 1.344(3) 2.738(3) 0.18088 4803(3)
4 2.306(5) —1.320(6) 8.522(4) —5.609(5) 2.4278(2)
5 1.8(7) —1.245(6) 2.96(6) 2.604(4) 1.244(5)
6 1.0(8) 0 47(7) ~3.7(8) 2.168(5)

We have used the asymptotic form for X,,; given in Eq. (24) and the volume element
in this coordinate system, given by

R3
duv=-o (&% —n*)dédndé .
This normalization then corresponds to a density of one particle per unit volume

at large distances (r> R).



Non Relativistic Continuum Wave Functions for Two Coulomb Centres 195

4. Summary

In conclusion, we have constructed continuum solutions to the Schrédinger
equation for the Coulomb field of two point nuclei, normalized to one particle
per unit volume at large distances. These solutions have a close analogy to the
solutions to the Helmholtz equation in prolate elliptical coordinates and for
symmetric systems the angular equation reduces to the free particle angular
equation. Table 1 shows that in many cases only a few terms in the series expansion
are required to ensure good accuracy, and hence the solutions have practical
utility.

Acknowledgements. I should like to thank Prof. W. Greiner for suggesting this problem. I have
enjoyed useful conversations on the subject with Prof. Greiner and Dr. K. Smith. The coefficients
in Table 1 were calculated at the GSI Rechenzentrum, and I would like to thank the staff there for
their help, especially Frau B. Lasitschka.

Appendix 1

1. Lowest Term in the Expansion of the Radial Wave Function

We wish to show that the lowest term in the expansion of Y, is the term U, ie.

le= Z?:O Um+nfn”d (AI)

and that no terms with n<0 are required. This may be seen by considering Eqs. (13) and (14). Since
H,=G,— %, and #,U;=0 we have

GU,=H,U,=a, U,+...
GUpsy=Hy jUpr 1=y U+ ...
GUpis=H, 3Upi 2= 0pg 2 U+ .
GUpr3=Hpi3Umi3=mssme 1 Uni1 + ..

SINCE Gy, -2 =0mm-1=0m+1,m—1=0. Therefore GU,, ., can generate no terms of order less than m
whenever n=0. Thus the series for Y, contains no terms of order less than m and the sum in (A1) runs
from n=0-n=o0o0.

2. The Singularities of A

c, C
Suppose 4 =det ( ! 2) =0. (A2)
Si 5,

Let us further suppose that the sums in Eq. (31) have been truncated at N terms so that
Cv = ZL\; 0 f;,(v)COS(qu +n ¢l) > (A3a)
Sy= Yoo SIS n— D). {A3D)

We also have N-2 homogeneous equations from the RR for the £, (it is easier to see this by considering
the RR for the g,), i.e.
uogs) + i +wag =0y o
tog +ui g + vh gy +wigd =0 } equations
....................................... (A3c)
A =0 gives two possible cases

1) Ci=y8;; Cp=78,
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ie.
=0 SOy 5 — P1) — VSin{Dy, 1, — B)] =0, (Ada)
=0 S [COS(Pp k=~ B1) ~ VSIN( Dy s, — BT =0 {Adb)

Now the RR Eq. (A3c) taken with (Ada) give N—1 homogeneous equations in N variables. Hence
they may be solved to within a normalization to give {f!")}. However (A3c) taken with (Ada) give
exactly the same N—1 homogeneous equations whose solution can only differ from { £} by a nor-
malization, and hence

f;l(l)__zgfﬂ(l) (AS)

Thus if C, =%S,;, C, =98, then 1 =¢ £ for all n. This can always be avoided by choosing f{* and f{*
such that

TSIV # 12112 (A6)
(2) Cy=yCy;  S§;=75,.
In this case we have the N-2 Eq. (A3c) and the two equations
o = P08 n— D) =0, (ATa)
n=ol 5V = 20y w - ) =0 (A7b)

This implies either £ =y £? which we may reject if (A6) is satisfied, or there exists a solution 1, =
FB_y £3 which satisfies the N homogeneous Eqs. {A3¢) and (A7). This is only possible if

cos(¢n— @) cos(dpi—P) — —

sin{p— @) sin(P —d) — -
detS=det | "7'Cm)luy, ™T2m+DW, — — | =0.

Tl 2m)lty T N 2mA Dy

- - - - (A8)

Let us write { £} as a column vector £, Then (A8) implies f is an eigenvalue of § with eigenvalue 0.
However since f¥ satisfies the RR which may be written in matrix form we know f7 is an eigenvalue
of 8’ with eigenvalue 1, where

1 0 - -
0 1 - -
§= | memy " mA D, — -

mm)le, T Om+ ), — —

Thus
COS(¢m - ¢l) -1 COS(¢m+ 1 ¢1) €os.... —
sin(¢g,, — &) sin(@p4 g —Pp—1 sin... -
0 0 0 _
ST =(S—§ ) = —f = 0 . o T
0 0 0 .

or §” must have an cigenvalue — 1 and therefore

c08(¢r~ ) COS(Pprsr—Pp) cOS... .. =

sin(y, ~ ¢y) S P+ —P) SiO... .~
0 0 +1 - -

0 0 0 +1 -

det
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which is only possible if

tan(¢m - ¢l) = tan(¢m+ 1 ¢l)

and from the definition of ¢, this is only possible if

1
arctan
m

=T ie. n—o0
1o e

It is easy to show, by the same technique, that provided

AP0+ 42

then there is no singularity in calculating the 4™.

References

. Morse, P. M., Feshbach, H.: Methods of theoretical physics, Chapter V, pp. 4291f. Tokyo: McGraw-

Hill-Kogakusha 1953. See especially table of separable coordinates in 3 dimensions VIII (p. 661)

. Chakravarty,S.K., Phil. Mag. 28, 421 (1939)
. Hylleraas,E.A., Z. Phys. 71, 739 (1931); Teller,E., Z. Phys. 61, 458 (1930)
. Helfrich,K., Hartmann, H.: Theoret. Chim. Acta. (Berl) 10, 406 (1968); 16, 277 (1970); Kehl,S.,

Helfrich, K., Hartmann, H.: Theoret. Chim. Acta (Berl.) 21, 44 (1971); Helfrich,K.: 21, 381 (1971)

. Miiller, B., Rafelski,J., Greiner, W.: Phys. Letters 47B, 5 (1973)
. Smith, K., Miiller, B., Greiner, W.: J. Phys. B 8, 75 (1975)
. Abramowitz, M., Stegun,l. A.: Handbook of mathematical functions, Chapter 21. New York:

Dover 1965

. Chakravarty,S.K.: Z. Phys. 109, 25 (1938)

. As Ref. [7] but see Chapter 14

. As Ref. [1] but see especially pp. 570 ff

. As Ref. [7] but see especially Introduction 7 and 19.28, Example 1

Dr. P. T. Greenland

Institut fiir Theoretische Physik der
Johann Wolfgang Goethe-Universitit
D-6000 Frankfurt (Main)
Robert-Mayer-Stralle 8—10

Federal Republic of Germany



